

1) Productivity or Welfare? When some goods are 'poorly' priced.

Productivity main source of growth of nations Output/Input

Measurement motivated by effect of additional output on consumers' standard of living

Productivity taken as index of welfare

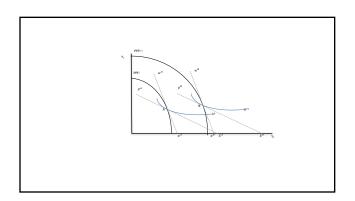
Nothing lost, all is transformed → Systems have unit productivity But our interest is *human* welfare → inputs and outputs that affect human welfan Productivity concept is *anthropocentric* But traditional productivity studies focus on shift of the production frontier rather than changes in welfare
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V
 V</li

• We weight inputs and outputs relative to their importance in human welfare

Perfect markets: use market prices as weights (MRT=MRS) equal shifts of PPF and welfare function

Market failure: market prices \neq MRT \neq MRS Shifts of PPF \neq welfare function Reasoning collapses in the presence of market failure

Examples:


1) Bads, "gives off smoke"

2) Public goods, infrastructure, R&D

3) Second best economy, policy distortions present

4) Markups due to imperfect competition

5) Common property, unpriced or 'badly' priced resources

- Focus on production introduces three potential sources of error.
- 1) Use of producers' evaluations rather than consumers' Rate of technical change vs. Hicks EV/CV
- 2) Perfect markets vs. Markets with externalities, 'poorly priced' netputs and policy distortions
- Omission of induced price effects general equilibrium vs. partial equilibrium

When market prices do not reflect shadow prices.

 Shadows to measure shifts in the production frontier to refine productivity measures short fluctuations, quasifixed netputs, capacity utilization non-CRS internal and external cost economies market structure regulatory structure (pollution abatement)

Shadows to measure shifts in consumer well-being Green accounting (stay-at-home, police force, services of nat. resources) Lagrange multipliers intertemporal max of welfare (Dasgupta and Mäler, 1995)

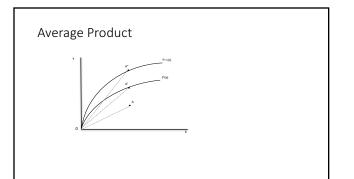
3) Shadows can be estimated from prevailing (rather than optimum) structure of production and consumption expenditure, cost, production functions, distance functions, Hicks marginal valuations contingent valuation, from marketed goods • In the case of 'poorly priced' commodities we have shown that:

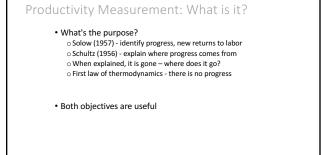
1. MFP and EV are equivalent when there are no biases in technical change and preferences are homothetic

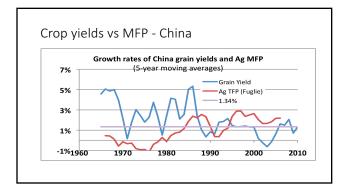
2. If not they will differ by a price effect, or a 'poorly priced' good effect, of both

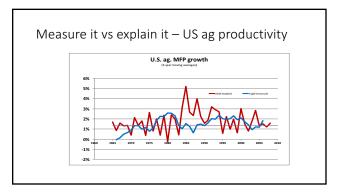
$$EV = MFP + (\mathbf{s} - \mathbf{k})\boldsymbol{\Sigma}_{xp}\frac{dln\boldsymbol{p}}{d\tau} + (\mathbf{s} - \mathbf{k})\boldsymbol{\Sigma}_{xv}\frac{dln\boldsymbol{v}}{d\tau}$$

References: Perrin and Fulginiti AJAE 1996, Perrin and Fulginiti AJAE 2001, Fulginiti and Perrin JPA 2005


1) Productivity or Welfare? When some goods are 'poorly' priced.


2) What is productivity? What for?


- Productivity measurement with natural resource and other 'poorly' priced netputs
- 4) Examples



Productivity: What is it?
• Single factor: output per input Y/X = Average Product output per acre, output per labor, output per water used
• Multifactor: index of outputs/index of inputs = Average Product Fisher, Tronquist (superlative)
MFP growth rate = % change in outputs - % change in inputs = Change in AP
Thermodynamics, Y/X = 1

So what do we learn from this?

There are unmeasured/unpriced netputs that have led to 'bias' in measuring productivity

 \circ Water

- o Climate o R&D
- o Infrastructure
- Ecological support

Productivity Measurement: What for?

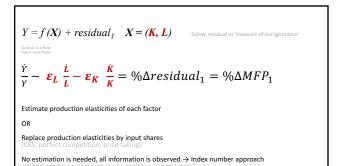
1. Gauge progress (Solow)– Human welfare from relatively fixed resources, such as land, water, climate, ecosystem resilience

2. Explain progress (Schultz, Griliches)-How it is achieved is important for policy But don't use the result as a metric for progress Themodynamics, again there is progress

/hen explained, productivity growth is gone

- 1) Productivity or Welfare? When some goods are 'poorly' priced.
- 2) What is productivity? What for?
- Productivity measurement with natural resource and other 'poorly' priced netputs
- 4) Examples

Productivity Measurement: Approaches


1) Quantities versus Prices Primal Space: production function, PPF, Isoquants, transformation function, distance functions

Dual Space: profit function, cost and revenue functions, dual distance functions.

2) With and without inefficiency: frontier versus non-frontier

3) Parametric and non-parametric Index numbers

Perfect competition Constant returns to scale

Physical man-made Capital is a stock (machinery, buildings). Usually owned rather than rented. No market transaction. Capital stock calculated based on gross I, 'perpetual inventory' method, by asset type

 $K_t = I_t + (1 \text{-} d_{t-1})K_{t-1}$

Calculate rental or user price of capital services (private)

 $p_{K,t} = p_{A,t} \left(r_t + p_D \right) - \left(p_{A,t} - p_{A,t-l} \right)$

 $\begin{array}{l} p_{\Delta} = asset \mbox{ price } \\ r = interest \mbox{ cost or opp cost of capital in other uses } \\ p_{0} = depreciation \mbox{ rate, loss of value with age } \end{array}$

Add Land (N): Y = $f(X) + residual_2$ X = (K, L, N)

 $\%\Delta MFP_2 = \frac{\dot{Y}}{Y} - \varepsilon_L \frac{\dot{L}}{L} - \varepsilon_K \frac{\dot{K}}{K} - \varepsilon_N \frac{\dot{N}}{N} = \%\Delta residual_2$ MFP₁ growth \neq MFP₂ growth Land is a natural resource stock, a non-produced asset. Owned and rented.

Market transactions reflecting the *private* rental or user price of land services

Could allow for quality differences using hedonics.

Other Natural Resources (R): $Y = f(X) + residual_3$ X = (K, L, N, R) (OECD, Brandt, Shreyer)

R = Natural resources such as mineral deposits, fish stocks, forests, soil nutrients, water, pollination, grass for livestock.

$$\%\Delta MFP_{3} = \frac{\dot{Y}}{Y} - \varepsilon_{L} \frac{\dot{L}}{L} - \varepsilon_{K} \frac{\dot{K}}{K} - \varepsilon_{N} \frac{\dot{N}}{N} - \frac{\varepsilon_{R}}{R} \frac{\dot{R}}{R} = \%\Delta residual_{3}$$

$$\begin{split} \mathsf{MFP}_1 & \mathsf{growth} \neq \mathsf{MFP}_2 & \mathsf{growth} \neq \mathsf{MFP}_2 & \mathsf{growth} \\ & \textit{Extractions} & \mathsf{from stock} & (\mathsf{groundwater}, \mathsf{fish stocks}, \mathsf{minerals}, \mathsf{etc.}) \\ & \textit{Private rental or user price of natural resource flows: license fees, or calculated shadow price if user is owner \\ & \mathsf{owner} \\ & \mathsf{rendulon} & \mathsf{in value of nat capital stock from extracting, marginal resource rend)} \end{split}$$

Common Property Resource? Which shadows? Private? Social?

Add public goods (R&D, Infrastructure) $Y = f(X) + residual_3$ X = (K, L, N, R, R & D, I)R&D = Public R&D I = Infrastructure

$$\%\Delta MFP_4 = \frac{\dot{Y}}{V} - \varepsilon_L \frac{\dot{L}}{L} - \varepsilon_K \frac{\dot{K}}{K} - \varepsilon_N \frac{\dot{N}}{N} - \varepsilon_R \frac{\dot{R}}{R} - \varepsilon_{RD} \frac{R\&D}{R\&D} - \varepsilon_I \frac{\dot{I}}{L} = \%\Delta residual_4$$

 MFP_1 growth $\neq MFP_2$ growth $\neq MFP_3$ growth $\neq MFP_4$ growth

R&D stock constructed from expenditures in R&D I stocks obtained from statistics on transportation

Flows are proportional to stock (so changes are equal)

Rental or user price: estimated

Add "Bads" (B)

 $H = f(U, X) + residual_5 \quad U = (Y, B) \quad X = (K, L, N, R, R\&D, I) \quad (\text{OECD, Brandt, Shreyer})$

B = Damage created by production process, by-products, GHG, pollution, destruction of habitat, etc.

 $\% \Delta MFP_5 = \varepsilon_y \frac{\dot{Y}}{Y} + \varepsilon_B \frac{\dot{B}}{B} - \varepsilon_L \frac{\dot{L}}{L} - \varepsilon_K \frac{\dot{K}}{K} - \varepsilon_N \frac{\dot{N}}{N} - \varepsilon_R \frac{\dot{R}}{R} - \varepsilon_{RD} \frac{R\dot{k}D}{RkD} - \varepsilon_I \frac{\dot{I}}{I} = \% \Delta residual_5$

 $\mathsf{MFP}_1 \text{ growth} \neq \mathsf{MFP}_2 \text{ growth} \neq \mathsf{MFP}_3 \text{ growth} \neq \mathsf{MFP}_4 \text{ growth} \neq \mathsf{MFP}_5 \text{ growth}$

Flows are the emissions.

Price of "bads": not observed unless there is a trading system or a tax; marginal abatement cost. Usually estimated.

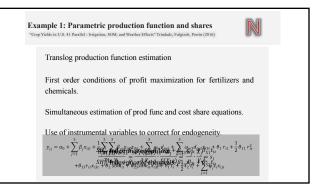
C (w, Y, t) dual cost function w= input prices Y= output Rate of cost diminution $\mathscr{Y}_0 \Delta MFP = \frac{\dot{C}}{C} - \frac{\dot{Y}}{Y} - \sum_{n=1}^N s_n \frac{\dot{w}}{w}$ $\mathscr{Y}_0 \Delta MFP = \frac{\dot{C}}{C} - (1 - \epsilon_{cY})\frac{\dot{Y}}{Y} - \frac{\dot{TE}}{TE} - \frac{\dot{AE}}{AE} - \sum_{n=1}^N (s_n - s^{"}_{n}) - \frac{\dot{w}}{w}$ Write We find Write magnetize We define magnetize We define magnetize Issue for common property resources (fisheries, groundwater), public goods and "bads" $% \mathcal{T}_{\mathrm{s}}$

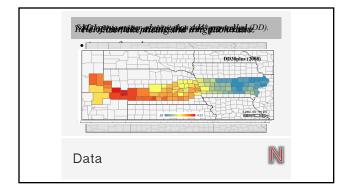
private user cost \neq social user cost

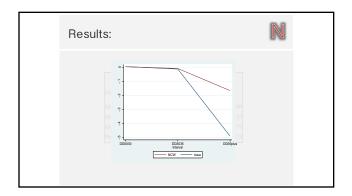
Social user cost is non-observable

Estimation is necessary to obtain shadow price or marginal valuations

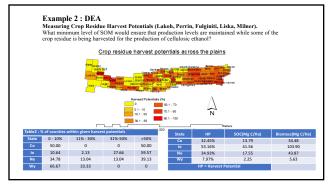
Approaches: econometrics, DEA, stated preferences, revealed preferences, from prices of marketed goods

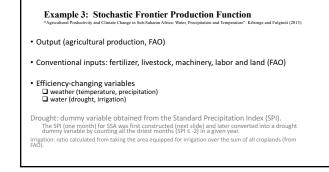

Issues


- 1) Measurement of stock of natural resources, SEEA (UN)
- Private versus social user cost (common property resource, property rights).
 Environmental interactions: external costs and benefits, values beyond market: cultural/recreational service, existence value, option value, habitat value, sink, water regulation, other services?
- Bads (excess N and P in water/river systems, capture of GHG emissions; destruction of habitat). Measurement of flows. Prices not reflected in output market prices.
- 5) Adjustment costs for durables (not at steady state), renewables and non renewables.
- 6) Other important capital inputs in agricultural productivity analysis that need attention : inventories (breeding stock, milk cows, fruit and nut trees; pollination; grass for livestock); R&D (intangible capital; private and public).

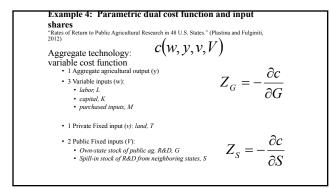

1) Productivity or Welfare? When some goods are 'poorly' priced.

- 2) What is productivity? What for?
- Productivity measurement with natural resource and other 'poorly' priced netputs
- 4) Examples





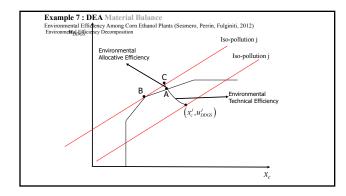
Conclusions:	N	
Technical change during the period was found to be 1.1% per year.		
One full day 30-35°C will decrease yields by 1% over 35°C will decrease yields by 27.1%, (nonlinear)		
SOM not significant.		
Effect of high temperatures can be offset by the use of irrigation.		
Irrigation contribution 26%.		
Contribution of fertilizer and chemicals to yield changes was significant.		

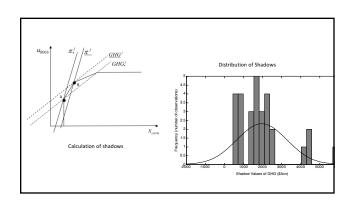


Continue - 4.007 Voir - 6.007 Voir - 6.007 Voir - 6.001 Procupit - 0.003 Irrigation - 0.429* Precipitation Temperature Fertilizer Livestock Machinery Labor 0.000073** 0.00115* 0.03* 0.11** 0.02* 0.11***	war 0.000 [™] Grant Brown FC -0.248 [™] Frank FC -0.318 [™] Marginar FC -0.033 [™] ** Inrigation -0.033 [™] ** Precipitation Fertilizer Livestock Machinery Labor	Years Ind	lependence			-0.003***			
Great Binans IX: 0.288** Twindo IX: 0.412** Taigiam IX: 0.638*** Twingourse IX: 0.033**** Trigation -0.0429* Precipitation Temperature Fertilizer Livestock Machinery Labor	Gree Brane NC 0.285** New NC 0.312** Bigare NC 0.313*** Precipitation Temperature Precipitation Temperature	Conflicts				-0.057			
Number Allot* National K: 0.540** Precipitation -0.0429* Precipitation Temperature Fertilizer	Number Allot* National K: 0.540** Precipitation -0.0429* Precipitation Temperature Fertilizer	War	War			0.030**			
Bargious IC 0.100** Pronugation IC -0.033**** Drought -0.0429* Precipitation Fertilizer Livestock Machinery Labor Land	Bargious IC 0.100** Pronugation IC -0.033**** Drought -0.0429* Precipitation Fertilizer Livestock Machinery Labor Land	Great Bri				-0.288**			
Perceptitation Temperature 1.533*** Precipitation -0.033*** Precipitation Temperature Fertilizer	Perceptitation Temperature 1.533*** Precipitation -0.033*** Precipitation Temperature Fertilizer	French Fl				-0.112**			
Drought -0.033*** Irrigation -0.429* Precipitation Temperature Fertilizer Livestock Machinery Labor Land	Drought -0.033*** Irrigation -0.429* Precipitation Temperature Fertilizer Livestock Machinery Labor Land	Belgium				0.140**			
Irrigation -0.429* Precipitation Temperature Fertilizer Livestock Machinery Labor Land	Irrigation -0.429* Precipitation Temperature Fertilizer Livestock Machinery Labor Land	Portugue				-1.932***			
Precipitation Temperature Fertilizer Livestock Machinery Labor Land	Precipitation Temperature Fertilizer Livestock Machinery Labor Land	Drou	ght			-0.033***			
		Irriga	tion			-0.429*			
		Dessision				Machinem	Lohar	land	
0.000073** 0.000115* 0.03* 0.11** 0.02* 0.11*** 0.60***	0.000073** 0.000115* 0.03* 0.11** 0.02* 0.11*** 0.60***	Precipitation	iemperature	rerunzer	LIVESLOCK	wachinery	Labor	Lanu	
		0.000073**	0.000115*	0.03*	0.11**	0.02*	0.11***	0.60***	

TABLE 2. Average weighted SSA TFP growth rate per decade (%)

Decades	TFP	TFP
		(with climate variables)
1960s	0.41	0.44
1970s	0.46	0.46
1980s	0.54	0.72
1990s	1.19	0.51
2000s	1.34	0.81
1960-2013	0.81	0.66

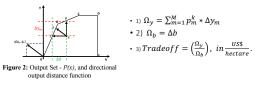

Model 2. With SAR. Selected estimates
of Z _G , B and r


STATE	Z _G	В	r (%) [95% Cl]
lowa	37.1 (18.19)	1.2 (0.165)	18.38 [0.0;22.5]
Kansas	62.3 (14.88)	2.01 (0.135)	21.5 [17.6;24.0]
Nebraska	52.4 (14.32)	1.69 (0.13)	20.44 [15.8;23.2]
New York	8.6 (3.78)	0.28 (0.034)	10.31 [0.3;13.7]
South Dakota	70.8 (21.84)	2.28 (0.198)	22.3 [16.6;25.4]
Nat'l Average	31.55 (10.48)	1.02 (0.095)	16.54 [8.6;19.8]

Model 2. B* and r_1	With SAR. S	Selected es	timates of F,
STATE	F	B*	r1 (%) [95% CI]
lowa	390.4 (46.32)	12.59 (0.419)	34.1 [32.1;35.7]
Kansas	313.0 (33.41)	10.1 (0.302)	32.43 [30.7;33.9]
Nebraska	525.6 (56.47)	16.96 (0.511)	36.41 [34.5;38.0]
New York	20.7 (17.32)	0.67 (0.157)	15.02 [0.0;20.8]
South Dakota	420 (49.68)	13.55 (0.449)	34.66 [32.6;36.3]
Nat'l Average	247.4 (30.52)	7.98 (0.276)	29.31 [26.5;29.3]

Example Benefits of Publ							Plastina,	Fulginiti, Ball, 2	012)
	icity o	f R&D, E	xtens	ion, Roa	ids, a	nd R&D	spill-i	ns (shado	w
hares)									
Elasticity	Mor	del 1	Мо	del 2	Mc	idel 3	М	odel 4	
	mean	dard devia	mean	dard devia	mean	dard devia	mean	ndard devia	
R&D	-0.129	0.090	-0.152	0.086	-0.135	0.081	-0.151	0.089	
Extension	-0.248	0.021	-0.233	0.019	-0.242	0.019	-0.243	0.020	
Road	-0.036	0.004	-0.054	0.005	-0.061	0.005	-0.058	0.005	
Spill-ins	-0.164	0.010	-0.014	0.006	-0.058	0.006	-0.040	0.004	
	•	ent incre &D redu		'C by 0.13	-0.15p	oercent.			
Dir	n exten	sion redu	ces TV	/C by 0.23	8-0.25	percent.			
Dir	n spill-ir	ns reduce	s TVC	by 0.01-0	.16 pe	ercent.			
⊡ lr	n roads	reduces ⁻	TVC by	0.04-0.0	6 perc	cent.			

(K) Capital	COST FUNCTIO						
(L) Labor (M) Materials	(Positive Shad		$= -\rho J_g > 0$				
		Table 2B of Public Innuts MC			Table 2D		
Instrumental Variables for Public Inputs		of Public Inputs MC Decade, Ball's Data			Public Inputs M ade, Thirtle's Da		
(G) Stock of Public Infrastructure	Decade				P*a	P*r	
(R) Stock of Public R&D		, v			Ŭ		
				1926-1930	2.90E-07	0.000136	
				1931-1940	3.00E-07	0.0000971	
				1941-1950	1.50E-07	0.0001746	
	1949-1959	8.00E-07	0.0004382	1951-1960	1.30E-07	0.0001343	
	1960-1969	5.00E-07	0.001426	1961-1970	1.10E-07	0.0001665	
	1970-1979	1.00E-06	0.0043971	1971-1980	4.00E-07	0.0003225	
	1980-1989	4.80E-06	0.0094812	1981-1990	1.12E-06	0.0004988	
	1990-1994	9.80E-06	0.0131529				

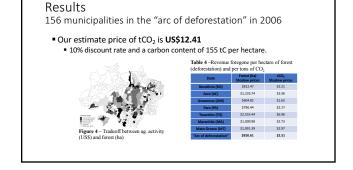

Example 8: Directional Distance Function, DEA, parametric stochastic frontier "Tadeoff between agriculture and forest preservation in the Brazilian amazon" (Silva Eulainiti and Perrin 2017)

The region (590 municipalities) Brazil

- 1. What is the **opportunity cost** of preserving the forest in terms of agricultural output? MRT and shadows
- 2. Has **technical change** allowed more or less agricultural output per hectare of deforestation? Shift
- 3. Has technical change been biased toward agricultural outputs or deforestation? Change in MRT.

Data Envelopment Analysis "The cost of forest preservation in the Brazilian Amazon: the arc of deforestation. (Silva, Fulginiti, and Perrin, 2016)

156 municipalities in the "arc of deforestation" in 2006


Data Envelopment Analysis 156 municipalities in the "arc of deforestation" in 2006

- Outputs
- i. Grains = soybean and corn (in tons)
- ii. Livestock = sold cattle (units)
- iii. Timber (in m³)
- iv. Average deforestation (in ha)

 Inputs Labor (employees), Capital (units), Area (ha), and Expenses (US\$ 1000): Fuel, Ag. Inputs and Cattle inputs

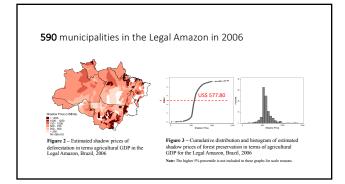
Figure 1 – Total deforestation (in 10,000 ha)

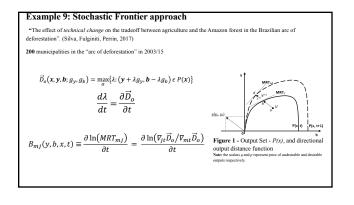
Stochastic Frontier approach "Tradeoff between agriculture and forest preservat 590 municipalities in the Legal Amazon in 2006 ion in the Brazilian Amazon." (Silva, Fulginiti, Perrin, 2017)

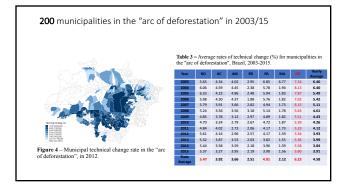
Outputs

- i. Agricultural Gross Domestic Product (US\$ 1000)
- ii. Average Deforestation (ha)

- Inputs
 Labor (employees), Capital (units), Irrigation (ha), Credit (US\$ 1000)
 Efficiency variables :
 Shared of family owned farms, total forest area in 2006 and total hydrological area in 2005




Figure A1 – Average deforestation (in 1,000 ha)


Results

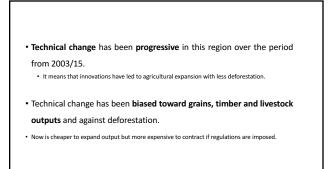
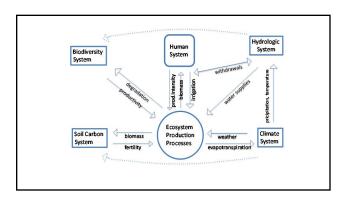
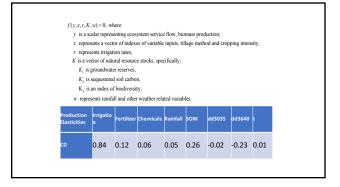

590 municipalities in the Legal Amazon in 2006

	Table 4 – Average Shadow Terms of Ag. GDP (US\$),		
	State	Mean	Standard Deviation
Our estimates price of tCO ₂	Acre (AC)	552.87	57.00
are much higher than the	Amazonas (AM)	603.16	117.23
US\$5.00 used in official	Amapá (AP)	554.89	57.95
REDD+ transactions	Maranhão (MA)	744.19	904.82
	Mato Grosso (MT)	1252.85	2311.84
It ranges US\$14.00 to	Para (PA)	669.38	340.87
US\$43.20 tCO ₂ .	Rondônia (RO)	616.02	264.04
	Roraima (RR)	974.83	1420.30
	Tocantins (TO)	689.47	653.52
	Legal Amazon	796.81	1206.76



Example 7: Forty-first Parallel Agro-Ecosystem Sustainability and Productivity (econometric + optimal control) Can we meet needs of food, feed and fuel through technical change without depleting resource stocks?

$\min_{x, r} H = p_x x + p_r r + \gamma R^{k} + \lambda [y - f(y, x, r, K, w)]$ subject to equations of motion:


 $\mathbf{k} = g(K, x, r, w)$

where:

 p_x , and p_r are prices of x and pumping cost for r, respectively, γ is a vector of shadow prices on natural resource stocks,

 $\boldsymbol{\lambda}$ is the Lagrange multiplier for the output level constraint,

and other variables are as previously defined.

K soil carbon:

 $\Delta Soil carbon ({\rm Mg}_{C/na/yr}) = {\rm A}_{\rm Scorn}(-0.348 - 0.00491^*C_0 + 0.228^*C_i) + {\rm A}_{\rm Scory}(-0.0815 - 0.00701^*C_0 + 0.219^*C_i) + {\rm A}_{\rm Scorp}(-1.321 - 0.00134^*C_0 + 0.937^*C_i)$

K biodiversity:

Grassland Birds Ind. = 7.53 - 0.06 acres - 0.10 biomass - 0.43 chemicals

K groundwater:

ΔDW = -0.4 +1.81 (irr. acres)- 0.154 (precip) +0.117 (max temp) -0.037 (sand)- 0.044 (silt)

Summary

1) It is well-being that we want to know about, weights should be consumers rather than producers in the presence of market failure ('hadlu pried or non-pried') are dustibility measures depart from well

2) Interpretation of productivity depends on objective: growth or explain it all (Solow vs Schultz)

 Social user cost should be used for natural capital, public goods, 'bads' as they are incorporated in an 'explain it all' productivity measure.

4) Measures of stocks and flows and estimation of user costs based on solid theoretical models (bioeconomic in most cases of natural capital, and institutional characteristics) and alternative approaches to estimation of the shadow values.

5) If an ecosystem approach is desired: a) other outputs should be included (provision, regulation, supporting, cultural) and b) existence and option value in addition to use value should be incorporated.

- Useful references (applications): OECD manuals: Capital, Productivity, Natural Capital, Bads, Green Growth Indicators, Compendium of Agri-environmental Indicators, Eurostat-OED complition Guide on Land Estimation, Greening Productivity Measurement (Schreye, Brandt and associates). SEA/UN, reports, SEA.FEA/FA/RAO report. World Bank reports (Where is the wealth of nations?) Australian Productivity Commission (minerals Topp, Syed and colleagues, intangibles) USDA/ESS (Ball, Nehring, Gollop and colleagues) Fincehel and Abbot Zheng, Bloch (minerals) Morrison-Paul, and colleagues (minerals, infrastructure, fisheries) Cuddington (oil) Squires, Felthoven, Fox, Hanneson, Kirkley and colleagues (fisheries) Age. Canada (minerals) Age. Canada (minerals) Age: Canada (minerals) RefF series on Understanding Productivity Change in Natural Resource Industries